
1 | P a g e

Digital Technology

PyGame Zero
Level 2 Code and Challenges

Version 2 .1 Barry Butler
May, 2021 bbutl58@eq.edu.au

2 | P a g e

Contents

You will be presented with digital problems (the development of an idea into a digital solution consisting of a
software and/or hardware prototype). These are the contexts in which you will learn the following coding
techniques.

You need a solid understanding of Year 9 coding techniques before you begin these sections:

Section Content
A PyGame Dictionaries

B PyGame Objects

C

PyGame User Interface

D PyGame User Interface Controls

E PyGame Files

F PyGame Strings

G PyGame Dates and Time

H PyGame Serial

I PyGame SQLite

J Other Useful Functions

For each digital problem, you will need to:

1. Restate the problem in concise bullet points

2. Research the problem (target audience, user requirements, consult experts and users, existing
software/hardware)

3. List the solution success criteria (outcomes) including specific functionality and data requirements

4. Construct a mind map based on the success criteria etc

5. Develop interface wireframes or mock-ups, interface hierarchy charts, diagrams of design ideas and hardware
connection diagrams.

6. Construct data dictionaries (list of constants, data structures and variables) and data flow diagrams

7. Construct the required algorithms using IPO (input-Process-Output) charts, pseudocode and process flow charts.

8. Construct algorithms for testing the code as it is developed

3 | P a g e

A. PyGame Dictionaries

Data Structures

We have already come across some of the Python data structures:

Tuples YELLOW = (255,216,0)

Lists spacemen = ['Neil','Andy','Loren','Buzz']

Dictionaries

Dictionaries are used to store data values in key:value pairs.

It is unordered, changeable and does not allow duplicates.

Dictionaries are written with curly brackets, and have keys and values. The key is a string, the values can be any
data type.

spaceship1 = {'type':'Saturn V', 'stages':3, 'year':1961,
 'color':(34,45,121), 'current':False}

Why Use Dictionaries not Lists?

• Searching for items in large datasets is hugely faster with dictionaries.
• Two of the most common data exchange formats (XML and JSON) contain key:value pairs in the same way as

dictionaries. This is important as the files contain the meaning of the data as well as the data values.

Access Dictionary Values

Values in a dictionary are unordered and cannot be accessed by an index.

To print the whole dictionary

print(spaceship1)

Values are accessed via the key, by either of two methods.

t = spaceship1['type']
y = spaceship1.get('year')
print(t, y)

Separate lists of the all keys and all values can also be accessed.

print(spaceship1.keys())
print(spaceship1.values())

4 | P a g e

Change, Add or Remove Dictionary Values

Items are changed via the key

spaceship1['year'] = 1964
print(spaceship1)

Items are added using a new key and assigning a value

spaceship1['burntime'] = 20
print(spaceship1)

Items are removed using the pop() method

spaceship1.pop('color')
print(spaceship1)

Loop the Dictionary

Loops can be used to access both keys and values.

def draw():
 . . .
 y = 50
 for item in spaceship1:
 screen.draw.text(item +' '+str(spaceship1[item]),
 topleft=(100,y), color=RED, fontsize=40)
 y += 50

Alternatively, use these loops for keys and values separately

 for key in spaceship1.keys():
 screen.draw.text(key, topleft=(400,y),
 color=YELLOW, fontsize=40)

 for value in spaceship1.values():
 screen.draw.text(str(value), topleft=(550,y),
 color=YELLOW, fontsize=40)

5 | P a g e

Create a Dictionary of Dictionaries

Dictionaries can be imbedded in other dictionaries - when data is being searched by a key. Make the key in the
container dictionary from values of the inner dictionaries.

spaceship1 = {'type':'Saturn V','stages':3,'year':1961}
spaceship2 = {'type':'Saturn II','stages':2,'year':1957}
spaceship3 = {'type':'Saturn I','stages':1,'year':1952}
spaceship4 = {'type':'Saturn VIII','stages':4}

spacetransport = {}
spacetransport[spaceship1['type']] = spaceship1
spacetransport[spaceship2['type']] = spaceship2
spacetransport[spaceship3['type']] = spaceship3
spacetransport[spaceship4['type']] = spaceship4

print(spacetransport)
print(spacetransport['Saturn I'])

List of Dictionaries

Lists have a fundamental problem – the meaning of the values is not imbedded in the data structure as it is in
dictionaries. But lists can be sorted, whereas dictionaries cannot.

We can place a dictionary in a list.

spaceship1 = {'type':'Saturn V','stages':3,'year':1961}
spaceship2 = {'type':'Saturn II','stages':2,'year':1958}
spaceship3 = {'type':'Saturn I','stages':1,'year':1952}
spaceship4 = {'type':'Saturn VIII','stages':4,'year':1978}

spaceships = [spaceship1, spaceship2, spaceship3, spaceship4]

Sort the List of Dictionaries

We can access dictionary values (e.g. ‘type’) for each list item to sort the list.

for i in range(len(spaceships)-1):
 for j in range(i+1,len(spaceships)):
 if spaceships[j]['type'] < spaceships[i]['type']:
 temp = spaceships[i]
 spaceships[i] = spaceships[j]
 spaceships[j] = temp

6 | P a g e

Display the List of Dictionaries on the Screen

def draw():
 screen.clear()
 screen.fill(LBLUE)
 x = 50
 for spaceship in spaceships: #loop this list
 y = 50
 for value in spaceship.values(): #loop the dictionary
 screen.draw.text(str(value), topleft=(x,y),
 color=RED, fontsize=30)
 y += 50
 x += 150

7 | P a g e

B. PyGame Objects

Objects

• Python is an object oriented programming language.
• Almost everything in Python is an object, with its properties (object variables) and methods (object

functions).
• A Class is like an object constructor, or a "blueprint" for creating objects.
• One class is created as a template for one or more objects.

Create a Class and an Object

Let’s create a class for a bouncing ball, with the properties it needs. The first letter of a class is written with a
capital.

class Ball():
 x = 0
 y = 0
 radius = 10
 x_speed = 2
 y_speed = 2
 color = 'yellow'

Don’t worry about getting this complete from the start. It is really easy to add new properties as you need them.

Use the class named Ball to create an object (instances of that class). The object is a python variable so we write the
variable all in lowercase.

class Ball():
 x = 0
 y = 0
 radius = 10
 x_speed = 2
 y_speed = 2
 color = 'yellow'

ball1 = Ball() #one instance of the class Ball

Class
Properties (variables) Methods (functions)

Object 1 Object 2 Object 3 Object 4

8 | P a g e

The Initialisation Method

The built-in initialisation method sets up the object with key parameters that determine its’ position, look and
behaviour.

The function is called __init__(). Inside the brackets list the parameters required to set up the object. The first
parameter of any method must be self.

class Ball():
 x = 0
 y = 0
 radius = 10
 x_speed = 2
 y_speed = 2
 color = 'yellow'

 def __init__(self, x, y, radius, x_speed, y_speed, color):
 self.x = x
 self.y = y
 self.radius = radius
 self.x_speed = x_speed
 self.y_speed = y_speed
 self.color = color

ball1 = Ball(400, 300, 40, 2, 2, 'red')

Create Multiple Objects of the same Class

We can now create lots of balls, and put them in different positions on the screen.

class Ball():
 x = 0
 y = 0
 radius = 10
 x_speed = 2
 y_speed = 2
 color = 'yellow'

 def __init__(self, x, y, radius, x_speed, y_speed, color):
 self.x = x
 self.y = y
 self.radius = radius
 self.x_speed = x_speed
 self.y_speed = y_speed
 self.color = color

ball1 = Ball(400, 300, 40, 2, 2, 'red')
ball2 = Ball(50, 50, 70, 3, 1, 'yellow')
ball3 = Ball(720, 400, 50, 1, 5, 'blue')
ball4 = Ball(200, 500, 20, 7, 7, 'black')

9 | P a g e

Add Other Methods

So far, the object does not do anything. We must write methods (object functions) that handles everything involved
with the object.

Let’s write a method to draw a ball, then call that method for each ball to draw it on the screen.

class Ball():
 . . .

 def draw(self):
 screen.draw.filled_circle((self.x, self.y), self.radius, self.color)

ball1 = Ball(400, 300, 40, 2, 2, 'red')
ball2 = Ball(50, 50, 70, 3, 1, 'yellow')
ball3 = Ball(720, 400, 50, 1, 5, 'blue')
ball4 = Ball(200, 500, 20, 7, 7, 'black')

def draw():
 screen.clear()
 screen.fill('white')
 ball1.draw()
 ball2.draw()
 ball3.draw()
 ball4.draw()

Method to Move the Ball

Write a method to move the ball.

WIDTH = 800
HEIGHT = 600

class Ball():
 . . .
 def update(self):
 self.x += self.x_speed
 self.y += self.y_speed

 if self.x < 0 or self.x > WIDTH: self.x_speed = - self.x_speed
 if self.y < 0 or self.y > HEIGHT: self.y_speed = - self.y_speed

ball1 = Ball(400, 300, 40, 2, 2, 'red')
. . .

def draw():
 screen.clear()
 screen.fill('white')
 ball1.draw()
 . . .

def update():
 ball1.update()
 ball2.update()
 ball3.update()
 ball4.update()

10 | P a g e

Method to Define the Ball Rectangle

If we are going to check if this ball has collided with another object we need to define the ball’s bounding rectangle.
First, add a property to store the bounding rectangle. The add a method to calculate it. Call this method when the
rectangle is created (in __init__), and when its’ position is updated.

class Ball():
 x = 0
 y = 0
 radius = 10
 x_speed = 2
 y_speed = 2
 color = 'yellow'
 rect = Rect((0,0),(20,20)) #(x,y),(width,height)

 def __init__(self, x, y, radius, x_speed, y_speed, color):
 self.x = x
 self.y = y
 self.radius = radius
 self.x_speed = x_speed
 self.y_speed = y_speed
 self.color = color
 self.get_rect()

 def draw(self):
 screen.draw.filled_circle((self.x, self.y), self.radius, self.color)

 def update(self):
 self.x += self.x_speed
 self.y += self.y_speed
 self.get_rect()

 if self.x < 0 or self.x > WIDTH: self.x_speed = - self.x_speed
 if self.y < 0 or self.y > HEIGHT: self.y_speed = - self.y_speed

 def get_rect(self):
 w = self.radius * 2
 rect = Rect((self.x-self.radius, self.y-self.radius),(w,w)) #(x,y),(w,h)

11 | P a g e

Create a list of objects

It would be so much easier if all the balls were in a list. Then we could simply loop through the list to draw and
update the balls. The class code does not change, but create a ball list rather than individual balls.

ball_list = []

ball_list.append(Ball(400, 300, 40, 2, 2, 'red'))
ball_list.append(Ball(50, 50, 70, 3, 1, 'yellow'))
ball_list.append(Ball(720, 400, 50, 1, 5, 'blue'))
ball_list.append(Ball(200, 500, 20, 7, 7, 'black'))

def draw():
 screen.clear()
 screen.fill('white')
 for ball in ball_list: ball.draw()

def update():
 for ball in ball_list: ball.update()

Create a New Class by Inheritance

Classes can inherit the properties and methods of existing objects. Let’s create a couple of bats using downloaded
images. The pyGame Zero Actor class already exists so we create our new class based on that.

class Bat(Actor): #inherits Actor properties x,y etc
 speed = 2 #new properties (variables)

Create new Bat objects, using the Actor initialisation parameters. Then draw them. The new class can also override
the methods of the parent class, by having a method of the same name.

bat1 = Bat('paddle', midleft=(20,300)) #download your own image for a bat
bat2 = Bat('paddle', midright=(780,300))

def draw():
 . . .
 bat1.draw()
 bat2.draw()

Test for Ball and Bat Collisions

Test for collisions in the update() method. Because we now know the ball bounding rectangle, we can collide with it.

def update():
 for ball in ball_list:
 ball.update()
 if bat1.colliderect(ball.rect):
 ball.x_speed = - ball.x_speed
 elif bat2.colliderect(ball.rect):
 ball.x_speed = - ball.x_speeds

We can access the Ball class properties by using the dot syntax (e.g. ball.rect, ball.x_speed. Alternatively, we could
have written another method in the Ball class to test for the collision.

12 | P a g e

C. Create a User Interface

The design of a user interface is an important part of giving the software user a great experience. We are going to
design a simple user interface.

Download the free user interface tool at https://www.justinmind.com/free-wireframing-tool. Another on-line tool
is https://marvelapp.com/ and https://marvelapp.com/pop .

1. Draw the User Interface and List the Tasks (Success Criteria)

First, we need to draw the user interface and work out the tasks that are required by the user interface window.
These are the success criteria for the app.

Every user interface can be separated into the following
components:

• Background (Shapes, Images)
• Text
• Controls (buttons, sliders, menus, inputs, radio

buttons, checklists, date selectors etc)
• Hot spots (clickable areas)
• Actors/sprites
• Movement
• Collisions
• Mouse actions (click, up, drag)
• Keyboard input
• Hidden (opening and saving files etc)

A list must be made of all the constants and variables required (as inputs or outputs)

For example, this is a breakdown of the “Sheep are Cool1” window:

Component Tasks (Success Criteria) PyGame Functions Coding Elements/ Data
Background Draw background colour (blue) screen.fill() color constants
 Draw light blue rectangle screen.draw.filled_rect()
 Draw sheep image sheep = Actor()

sheep.draw()

Text Draw title screen.draw.text()
 Draw page number page = 1
 Draw lines of text in rectangle text = []

for line in text:
Controls Draw left arrow left_arrow = Actor()
 Draw right arrow
Actor/sprite Draw cat sprite cat = Actor()
Movement Move cat along the bottom of the page from

left to right and reverse
def update()

cat.x, cat.y

Mouse/keyboard Click left arrow to move down pages def on_mouse_down()
 Click right arrow to move up pages def on_key_down()
 Press left arrow key to move down pages
 Press right arrow key to move up pages

When we construct the UI, we will do it in an order very close to the list here.

https://www.justinmind.com/free-wireframing-tool
https://marvelapp.com/
https://marvelapp.com/pop

13 | P a g e

The Principles of User Interface Design

Learn to design with your user’s needs and expectations in mind by applying Jakob Nielsen and Rolf Molich’s Ten
User Interface Guidelines. These heuristics have been reflected in many of the products designed by some of the
most successful companies in the world such as Apple, Google, and Adobe.

See https://www.interaction-design.org/literature/article/user-interface-design-guidelines-10-rules-of-thumb

a. Visibility of system status. Users should always be informed of system operations with easy to understand and
highly visible status displayed on the screen within a reasonable amount of time.

b. Match between system and the real world - mirror the language and concepts users would find in the real
world. Present information in logical order.

c. User control and freedom - backward steps are possible, including undoing and redoing previous actions.

d. Consistency and standards - ensure that both the graphic elements and terminology are maintained across
similar platforms.

e. Error prevention - potential errors are kept to a minimum. Users do not like being called upon to detect and
remedy problems, which may on occasion be beyond their level of expertise.

f. Recognition rather than recall - recognizing something is always easier than recall

g. Flexibility and efficiency of use - allow faster navigation using abbreviations, function keys, hidden commands
and macro facilities. Users should be able to customize or tailor the interface to suit their needs.

h. Aesthetic and minimalist design. Keep clutter to a minimum whilst providing clearly visible and unambiguous
means of navigating to other content.

i. Help users recognize, diagnose and recover from errors - error messages expressed in plain language.

j. Help and documentation - easily located, specific and step-by-step.

The CARP Principles of Design

Also see:

https://www.smashingmagazine.com/2018/02/comprehensive-guide-ui-design/

https://www.interaction-design.org/literature/article/user-interface-design-guidelines-10-rules-of-thumb
https://www.smashingmagazine.com/2018/02/comprehensive-guide-ui-design/

14 | P a g e

1. Build Missing Components (e.g. a Clickable Button)

We will construct a clickable button as an object Class, so we can re-use it for each button on the window.

#BUTTON------------------------------
class Button():
 text = ''
 x = 0
 y = 0
 width = 0
 height = 0
 col = BROWN
 visible = True

Next, write the code to initialise the button when we create objects from the Class.

#BUTTON------------------------------
class Button():
 text = ''
 x = 0
 y = 0
 width = 0
 height = 0
 col = 'light blue'
 visible = True

 def __init__(self,text,x,y,width,height,col,visible):
 self.text = text
 self.x = x
 self.y = y
 self.width = width
 self.height = height
 self.col = col
 self.visible = visible

Write a function to draw the button – filled rectangle, then unfilled rectangle, finally the text

 def draw(self):
 screen.draw.filled_rect(Rect((self.x,self.y),(self.width,self.height)),
 self.col)
 screen.draw.rect(Rect((self.x,self.y),(self.width,self.height)),'black')
 mid_x = self.x + self.width//2
 mid_y = self.y + self.height//2
 screen.draw.text(self.text,center=(mid_x,mid_y),color='black',fontsize=30)

15 | P a g e

Write a function to test if the mouse click (x,y) is inside the button rectangle, and return True if it is.

 def click(self,pos): #pos = (x,y)
 found = False
 x = pos[0]
 y = pos[1]
 if (x > self.x and x < self.x+self.width)
 and (y > self.y and y < self.y+self.height):
 found = True
 return found

That’s it. Now test the code by creating a button object, drawing it on the window and testing for a mouse click.

#BUTTON------------------------------
class Button():
 . . .

ok_button = Button('OK',400,300,70,40,'yellow',True) #text,x,y,width,height,col,visible

def draw():
 screen.clear()
 screen.fill('white')
 ok_button.draw()

def on_mouse_down(pos,button):
 print(pos)
 if button == mouse.LEFT:
 if ok_button.click(pos):
 print('OK button clicked')

2. Code the Complete Window

We will build a window to will calculate the area of a rectangle, with controls to change its’ size. This will answer the
question ‘What happens to the area of a rectangle when its’ size increases’ – a common year 9 Maths problem.

3a. Wireframe diagram

First, we will draw a wire-frame of the window. Try different layouts (e.g. buttons on panel at the top or the left).

16 | P a g e

3b. Table of Components, Tasks and Data

Second, we will construct a table of components, tasks (success criteria) and data requirements.

Component Tasks (Success Criteria) PyGame Functions Coding Elements/ Data
Background Draw background colour (mid blue) screen.fill() color constants

Draw blue rectangle (left or top) screen.draw.filled_rect() class Window()
def draw()

Text Draw title screen.draw.text()
Draw Area label
Draw Data labels area, width, height

Controls Draw Bigger button Button.draw() bigger_btn
Draw Smaller button smaller_btn
Draw Reset button reset_btn

Rectangle for
area calculation

Draw rectangle screen.draw.filled_rect() class RectArea()
Draw using width, height

Mouse Click Bigger button def on_mouse_down() Resize rectangle and
calculate area

Click Smaller button Resize rectangle and
calculate area

Click Reset button Reset rectangle and
calculate area

From this table, we decide what object classes we will need and their properties and methods. It is always a good
idea to separate the problem data from the window layout so we will create the following classes:

class Window(): layout rectangles, text and buttons
 bigger_btn
 smaller_btn
 reset_btn

 def draw(self, area, width, height) #data required to put on screen

class RectArea():

width = 10
height = 20
area = 200

def draw()
def calc_area()
def resize()
def reset()

We will now start writing the code.

Test each coding stage carefully before going on!!

17 | P a g e

3c. Code the Window Class and Draw

Third, we will set up our colours and make an object class for the window and draw the window

#GLOBAL CONSTANTS--
WIDTH = 800
HEIGHT = 600

LBLUE = (189,242,255)
GBLUE = (94,157,173)
MIDBLUE = (160,232,250)
BROWN = (173,123,76)
LBROWN = (250,203,160)
BLACK = (0,0,0)
WHITE = (255,255,255)

<--------------------Button Class inserted here

#WINDOW---
class Window():
 bigger_button = Button('Bigger',35,220,80,40,BROWN,True)
 smaller_button = Button('Smaller',35,280,80,40,BROWN,True)
 reset_button = Button('Reset',35,340,80,40,BROWN,True)

 def draw(self, area, width, height):
 screen.draw.filled_rect(Rect((0,0),(150,HEIGHT)),MIDBLUE)
 screen.draw.filled_rect(Rect((150,0),(WIDTH-150,HEIGHT)),LBLUE)

 screen.draw.text('Rectangle Area Calculation',(335,10),color=BROWN,fontsize=30)
 screen.draw.text('Area (pixels)',center = (75,60),color=BLACK,fontsize=25)
 screen.draw.text(str(area),center = (75,100),color=BROWN,fontsize=30)
 screen.draw.text('('+str(width)+', '+str(height)+')',center = (75,140),
 color=BROWN,fontsize=30)
 self.bigger_button.draw()
 self.smaller_button.draw()
 self.reset_button.draw()

window = Window()

#PYGAME FUNCTIONS---
def draw():
 screen.clear()
 window.draw(200,10,20) #put test data in here before the real thing

18 | P a g e

3d. Code for Mouse Clicks and Test

Once we have debugged the code and are happy with the static layout of the window, we are ready to respond to
mouse clicks:

def on_mouse_down(pos,button):
 if button == mouse.LEFT:
 if window.bigger_button.click(pos):
 print('Bigger') #use print to check it’s working
 elif window.smaller_button.click(pos):
 print('Smaller')
 elif window.reset_button.click(pos):
 print('Reset')

3e. Code the Rectangle Area Class

#RECTAREA---
class RectArea():
 width = 10
 height = 20
 area = 200

 def draw(self):
 x = 150 + (650//2) - (self.width//2)
 y = HEIGHT//2 - (self.height//2)
 screen.draw.filled_rect(Rect((x,y),(self.width,self.height)),WHITE)

 def calc_area(self):
 self.area = self.height * self.width

 def resize(self,bigger): #True – make bigger, False - smaller
 if bigger: factor = 2
 else: factor = 0.5
 w = round(self.width * factor) #use temp variables to calculate first
 h = round(self.height * factor)
 if w >= 5 and w <= 160: #test if new width is not too small/big
 self.width = w #set values
 self.height = h
 self.calc_area()

 def reset(self):
 self.width = 10
 self.height = 20
 self.calc_area()

rect_area = RectArea()

19 | P a g e

3f. Link to Buttons and Draw Function to Test

#PYGAME FUNCTIONS--
def draw():
 screen.clear()
 window.draw(rect_area.area,rect_area.width,rect_area.height)
 rect_area.draw()

def on_mouse_down(pos,button):
 if button == mouse.LEFT:
 if window.bigger_button.click(pos):
 rect_area.resize(True)
 elif window.smaller_button.click(pos):
 rect_area.resize(False)
 elif window.reset_button.click(pos):
 rect_area.reset()

That’s it!!

20 | P a g e

D. User Interface Controls

The following user interface controls have been constructed for you in PyGame:

Button

ok_button = Button('OK',100,100,70,40,'light blue',True)
 #text, x, y, width, height, color, visible

ok_button.draw()

def on_mouse_down(pos,button):
 if ok_button.click(pos, button):
 print('OK button clicked')

Horizontal Slider

slider = Slider(50,70,300,50,0,40,20,' cm','brown')
vslider = VSlider(400,70,70,150,0,180,90,' deg','brown')
 #x,y,width,height,min_value,max_value,value,unit,colour

slider.draw()
vslider.draw()

def on_mouse_down(pos, button):
 if slider.click(pos, button):
 print(slider.value, slider.percent)
 if vslider.click(pos, button):
 print(vslider.value, vslider.percent)

Vertical Slider

List Control

data_list = ['Option 1','Option 2','Option 3']
 #list of strings or list of lists

display_table = ListControl(400,20,data_list,18,2,130,True)

 #x, y, data_list, no of rows, no. of columns, column width, show_slider)
or
display_table = ListControl(400,20,None,18,2,130,True)

table.clear_table()
for row in data_list:
 table.add_table_row(row, False, 0)

display_table.draw()

def on_mouse_down(pos, button):
 global data_list
 if display_table.click(pos, button):
 if display_table.index > -1:
 print(display_table.value)

21 | P a g e

Graph (0=Line, 1=Scatter and
2=Bar)

graph = Graph(300, 200, 400, 200, 'Speed vs distance',
 'Speed (km/h)', 'Distance (m)', 0)
 # origin_x, origin_y, x_len, y_len, title, label_x, label_y, graph_type

data_list = [[x1,y1],[x2,y2]] #make a data array
graph.xydata = data_list #add all data at once

graph.draw()

graph.clear() #remove all data

graph.add(x,y) #add a data point
graph.delete_first() #delete data at index 0

22 | P a g e

E. PyGame Files

File Handling

No data in programs is available once the program ends unless it is stored in a file.

Python has several functions for creating, reading, updating, and deleting files.

The Python Operating System (OS) library also has functions for creating and removing folders; and removing files.

Data can be stored in a variety of file formats including text, CSV, JSON and XML. The use of flat and relational
database files (e.g. mongoDB and SQLite) is covered in other Lessons.

HINT: In general, use CSV files for tabular data and JSON for structured data.

Get a List of Files in a Folder

from os import listdir

data_folder = 'data'
data_files = listdir(data_folder)
print(data_files)

Opening and Closing Text Files

For data to be stored safely, files must be properly opened and closed. The easiest way to do this is using a with
statement.

with open('spacecraft.txt', 'w') as f:
 pass

Using this code the file will be opened and automatically closed.

There are two common modes for opening files:

'r' Open for reading (default)

'w' Open for writing, truncating (overwriting) the file first

'a' Open for writing, adding new data to the end of the file.

23 | P a g e

Write and Read Data with Text Files

To write data to a text file:

spacemen = ['Neil','Andy','Loren','Buzz']

with open('astronaut.txt', 'w') as f:
 for item in spacemen:
 f.write(item + '\n') #\n puts a line between items

Open the file and check the contents – each on a separate line.

To read data from the text file:

spacemen = []
with open('astronaut.txt', 'r') as f:
 for line in f:
 spacemen.append(line[:-1]) #[:-1] takes off last 2 chars

print(spacemen) #test that read successful

Write and Read Data with CSV Files

To write list data to a CSV file (line end is '\r\n' by default – carriage return and new line):

import csv

with open('spaceships.csv', mode='w') as f:
 writer = csv.writer(f, delimiter=',', quotechar='"',
 lineterminator = '\n',
 quoting=csv.QUOTE_MINIMAL)

 writer.writerow(['Type', 'Stages', 'Year'])
 for ship in ships:
 writer.writerow(ship)

Of course, you can also do it manually:

with open('aa_spaceships.csv', mode='w') as f:
 f.write("Type,Stages,Year\n")
 for ship in ships:
 s = '"'+ship[0]+'",'+str(ship[1])+','+str(ship[2])+'\n'
 f.write(s)

24 | P a g e

To read a CSV file to a list:

ships = []

with open('spaceships.csv', mode='r') as f:
 csv_reader = csv.reader(f, delimiter=',')
 line_count = 0
 for row in csv_reader:
 if line_count == 0: #column names
 pass
 elif not row == []:
 ship = [row[0], int(row[1]), int(row[2])]
 ships.append(ship)
 line_count += 1

for ship in ships: print(ship)

Write and Read JSON Files

JSON stands for JavaScript Object Notation, and was initially created for web site data transfer. A file looks like this:

{
 "firstName": "Jane",
 "lastName": "Doe",
 "hobbies": ["running", "sky diving", "singing"],
 "age": 35,
 "children": [
 {
 "firstName": "Alice",
 "age": 6
 },
 {
 "firstName": "Bob",
 "age": 8
 }
]
}

You will notice the similarity to a Python Dictionary.

25 | P a g e

To write a JSON file:

import json

spaceship1 = {'type':'Saturn V','stages':3,'year':1961}
spaceship2 = {'type':'Saturn II','stages':2,'year':1957}
spaceship3 = {'type':'Saturn I','stages':1,'year':1952}
spaceship4 = {'type':'Saturn VIII','stages':4}

spacetransport = {}
spacetransport[spaceship1['type']] = spaceship1
spacetransport[spaceship2['type']] = spaceship2
spacetransport[spaceship3['type']] = spaceship3
spacetransport[spaceship4['type']] = spaceship4

with open("spacestransport.json", "w") as f:
 json.dump(spacetransport, f)

To read a JSON file:

spacetransport = {}

with open("spacetransport.json", "r") as f:
 spacetransport = json.load(f)

print(spacetransport)

Write and Read XML Files

See:

https://kontext.tech/column/python/480/read-and-write-xml-files-with-python

https://stackabuse.com/reading-and-writing-xml-files-in-python/

https://www.geeksforgeeks.org/reading-and-writing-xml-files-in-python/

https://kontext.tech/column/python/480/read-and-write-xml-files-with-python
https://stackabuse.com/reading-and-writing-xml-files-in-python/
https://www.geeksforgeeks.org/reading-and-writing-xml-files-in-python/

26 | P a g e

F. PyGame Strings

String Handling

Python is a language with rich built-in string (text) handling functions to:

• Find the length
• Change the case
• Check the characters (alpha, numeric, float)
• Strip whitespace
• Join, split strings
• Find and replace characters or substrings
• Format strings

References

You really don’t need to remember how to handle strings – there are so many functions. Look up some good
websites for details:

https://www.w3schools.com/python/python_strings.asp

https://www.w3schools.com/python/python_string_formatting.asp

https://www.shortcutfoo.com/app/dojos/python-strings/cheatsheet

https://www.codecademy.com/learn/learn-python-3/modules/learn-python3-strings/cheatsheet

Formatting Values in Strings

One of the most useful functions is to insert and format text, integers and decimals using the format function. Add
placeholders (curly brackets {}) in the text, and a list of values as function parameters. For example.

price = 49
txt = "The price is {} dollars"
print(txt.format(price))

More than one placeholder can be used.

quantity = 3
itemno = 567
price = 49
myorder = "I want {} pieces of item {} for {:.2f} dollars."
print(myorder.format(quantity, itemno, price))

https://www.w3schools.com/python/python_strings.asp
https://www.w3schools.com/python/python_string_formatting.asp
https://www.shortcutfoo.com/app/dojos/python-strings/cheatsheet
https://www.codecademy.com/learn/learn-python-3/modules/learn-python3-strings/cheatsheet

27 | P a g e

Use indexes to be sure the values are placed correctly.

quantity = 3
itemno = 567
price = 49
myorder = "I want {0} pieces of item {1} for {2:.2f} dollars."
print(myorder.format(quantity, itemno, price))

Common formatting codes include:

Integers :d {:d} {:5d}

Fixed Point Decimals :f {:.2f} {:8.2f}

Percentage :%

Left, right or centre aligned :<

:>

:^

{:<8}

Comma as a thousands separator :, {:d:,}

For a complete list of formatting codes see:

https://www.w3schools.com/python/ref_string_format.asp

https://www.w3schools.com/python/ref_string_format.asp

28 | P a g e

G. PyGame Dates and Time

Import the datetime module to handle dates and times.

import datetime

d = datetime.datetime.now()
print(str(d))
print(d.year)
print(d.month)
print(d.day)
print(d.hour,':',d.minute,':',d.second)
print(d.strftime("%A"))

To create a date in datetime format:

y = 2020
m = 11
d = 30
d = datetime.datetime(y,m,d)
print(str(d))

29 | P a g e

H. PyGame Serial Connection with CPX or Metro M4 CircuitPython Boards

First, we will write the CircuitPython code to save to the circuit board which
will send data to the computer. It will do this in two ways: via the print
statement that goes down the standard USB connection cable, and the uart
write statement that goes down a special USB to TTL Serial Adapter.

Then we will write the PyGame Zero code for the computer to read the data
that is being sent through either cable.

CPX Code to Send Serial Data (in CircuitPython Mode, save to CIRCUITPY as code.py)

The CPX code used to send data is:

import time
import board
import busio
from adafruit_circuitplayground.express import cpx

uart = busio.UART(board.TX, board.RX, baudrate=115200)

while True:
 t = time.monotonic()
 l = cpx.light
 e = cpx.temperature
 output = "{0:.1f}, {1:d}, {2:.1f},\n".format(t,l,e) #or \r\n
 uart.write(output.encode()) #write to serial
 print(str(t) + ', ' + str(l) + ', ' + str(e) + ', ') #print to REPL
 time.sleep(1.0)

Both the uart.write() and print() functions send serial data. Data must be sent with a line feed character at the end
("\n"). The print() function automatically does this.

Note: in early version of CircuitPython the code to write to the serial port was uart.write(output)

Connect the USB to TTL Serial Adapter

The red wire is not required and should not be used if you power the board from a battery or the native USB port.

Green to RX (A6-D0 Signal)
White to TX (A7-D1 Signal)
Black to any GND

30 | P a g e

Find the Computer Serial Ports in Use (PyGame Zero Mode)

Serial connections are used to connect devices to the computer and transfer data to and from that device.

The first thing we need to know is the name computer port used in the serial connection. Run the following code
without the device plugged in, then again with it plugged in, to get the name of the connection port.

import serial
import serial.tools.list_ports as port_list

ports = list(port_list.comports())
for p in ports:
 print(p)

Create a Serial Connection

To connect to another device you need a bit of information: baud rate (how fast the data can be transmitted); parity
(Positive, Negative or None); stop bits; byte size (in bits)

For example, a CPX board will connect with a baud rate of 115200, parity of None, one stop bit and a bitesize of 8.

The following code will connect to a CPX board, print its’ name and flush the input buffer ready for receiving data.
Change the port to be the name of the port on your computer.

ser = serial.Serial(
 port="COM53", #replace this with your serial port
 baudrate=115200,
 parity=serial.PARITY_NONE,
 stopbits=serial.STOPBITS_ONE,
 bytesize=serial.EIGHTBITS,
)
print(ser.name)
ser.flushInput()

Read Serial Data from a CPX

The readline function is used to read a series of data bytes ending in \n. The code then turns this into a string of
comma delimited data. Create a global variable (e.g. data_list) to store the values.

data_list = [] #global variable

def update():
 global data_list
 data = ser.readline()
 if data is not None:
 data_string = "".join([chr(b) for b in data]) #turn bytes into a string
 data_list = data_string.split(",") #create a list of data
 #print(data_list, len(data_list))
 if len(data_list) >= 3:
 print('time, light, temperature')
 print(data_list[0], data_list[1], data_list[2])

Data is sent from the CPX ending with either "\r\n" or "\n". Use the print statement to see what has been written
and remove it, for example, by using x[2] = x[2][0:-5]

31 | P a g e

Write PyGame Serial Data to a CPX (PyGame Zero mode)

There are two ways of sending serial data. Data must be converted to a string and end with a line feed.

x = 186.23
s = str(x) + "\n"
ser.write(s.encode()) #send numeric variable as a string

s = "12.54\n"
ser.write(s.encode()) #send a string variable

ser.write(b"1234.5654\n") #send a constant value

CPX Code to Read Data from Serial Connection (CircuitPython Mode)

import time
import board
import busio

uart = busio.UART(board.TX, board.RX, baudrate=115200)

blist = []
s = ''
while True:
 data = uart.read(1) #read 1 to 32 bytes
 if data is not None: #data was received
 blist.append(data) #so can see actual data
 s = s + ''.join([chr(b) for b in data]) #convert to a string
 eol = (s[-1] == '\n') or (s[-1] == '\r') #test of \n or \r

 print(s, str(blist), eol) #check it’s all working

 if eol:
 uart.write('Data Received: '+s + '\n') #send back confirmation
 s = ''
 blist.clear()

NOTE: Plug in serial USB connection before saving. '\r' is generated by pressing the Enter key when using a terminal
emulator program.

32 | P a g e

Test with a Terminal Emulator Program

A terminal emulator program can be used to check connections to a CPX or other equipment. For information to go:

https://learn.adafruit.com/circuit-playground-express-serial-communications/overview

Windows

Download PuTTY from https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

See https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-windows

Mac

See https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux

Steps:

1. Open Terminal (Command-Space)
2. Type: ls /dev/tty.*

This will show a list of all the serial ports
3. To connect with the serial port and show input data on screen:

screen /dev/tty.boardname 115200
4. To exit the serial connection and disconnect from the serial port:

Ctrl-A then Ctrl-\

Challenge

Write a user interface for reciving CPX data

Write a PyGame program to send the CPX messages to turn on pixels, play tones and send back light / temperature
information and button presses.

https://learn.adafruit.com/circuit-playground-express-serial-communications/overview
https://www.chiark.greenend.org.uk/%7Esgtatham/putty/latest.html
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-windows
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux

33 | P a g e

I. SQLite Relational Database

SQLite

• SQLite is a relational database management system contained in a C library.
• SQLite is not a client–server database engine. Rather, it is embedded into the end program.
• A database is made up of tables, each with a number of columns.

See https://www.sqlite.org/index.html for more information.

SQLiteStudio

SQLiteStudio is an application to create, edit, and browse SQLite databases. It is very handy to check the database
tables and test SQL statements.

To download, visit https://sqlitestudio.pl/ .

Create a New Database

To create a database:

1. Import the libraries
2. Create a folder using the Python os library(this example will create a mu_code\sqlite folder)
3. Link the database to that folder and a file name.

import sqlite3 #import sqlite library
from sqlite3 import Error

path = r"C:\Users\bbutl58\mu_code\sqlite"
try:
 os.mkdir(path)
except OSError as e:
 print (e,"Creation of the directory %s failed" % path)
database = os.path.join(path,"tutorial.db")

Next, write the code to create or open the database file.

def create_connection(db_file):
 conn = None
 try: #trap any erros
 conn = sqlite3.connect(db_file) #open or create the file
 return conn
 except Error as e:
 print(e)

 return conn

conn = create_connection(database)
if conn is not None: #immediately close the file
 conn.close()

https://www.sqlite.org/index.html
https://sqlitestudio.pl/

34 | P a g e

To create a new database in memory use: conn = sqlite3.connect(':memory:')

SQL Commands

SQL is a standard language for storing, manipulating and retrieving data in databases.

The main commands we will use are:

CREATE TABLE Creates a new database table

INSERT INTO Inserts new records into a table

UPDATE Updates a record in a table

DELETE FROM Deletes a record from a table

SELECT * FROM Select columns from a table and returns data

See https://www.w3schools.com/sql/default.asp for a comprehensive tutorial of SQL.

Create Tables

To create a new table in a SQLite database from a Python program, you use the following steps:

1. Create a Connection object using the connect() function of the sqlite3 module (as above).

2. Create a Cursor object by calling the cursor() method of the Connection object.

3. Pass the CREATE TABLE statement to the execute() method of the Cursor object and execute this method.

4. Close the connection using the close() method.

https://www.w3schools.com/sql/default.asp

35 | P a g e

SQL Constants

Create constants for each table. SQL statements should be created as string constants, embedding the SQL
commands.

PROJECTS = 0
TASKS = 1

sql_create_projects = """ CREATE TABLE IF NOT EXISTS projects (
 id integer PRIMARY KEY,
 name text NOT NULL,
 begin_date text,
 end_date text
); """

sql_create_tasks = """ CREATE TABLE IF NOT EXISTS tasks (
 id integer PRIMARY KEY,
 name text NOT NULL,
 priority integer,
 status_id integer NOT NULL,
 project_id integer NOT NULL,
 begin_date text NOT NULL,
 end_date text NOT NULL,
 FOREIGN KEY (project_id) REFERENCES projects (id)
); """

Table Functions – Create Table

Functions must be written to connect to the database, operate on the tables, and close the database. The first
function is to create the tables.

def create_table(create_table_sql):
 conn = create_connection(database)
 if conn is not None:
 try:
 c = conn.cursor()
 c.execute(create_table_sql) #if it does not exist
 except Error as e:
 print(e)
 conn.close()
 else:
 print("Error! Cannot create the database connection.")

Call the function:

create_table(sql_create_projects)
create_table(sql_create_tasks)

Use SQLiteStudio to check the results.

36 | P a g e

Insert Data into the Table

sql_insert_project = """ INSERT INTO projects(name,begin_date,end_date)
 VALUES(?,?,?) """

sql_insert_task = """ INSERT INTO tasks(name,priority,status_id,
project_id,begin_date,end_date)
 VALUES(?,?,?,?,?,?) """

def insert_table(table, data):
 id = -1
 conn = create_connection(database)
 if conn is not None:
 try:
 c = conn.cursor()
 if table == "project": c.execute(sql_insert_project, data)
 elif table == "task": c.execute(sql_insert_task, data)
 conn.commit()
 id = c.lastrowid #project id
 except Error as e:
 print(e)
 conn.close()
 else:
 print("Error! Cannot create the database connection.")
 return id

37 | P a g e

Call the function to insert data into the table:

#insert project data
project = ('Cool App with SQLite & Python', '2015-01-01', '2015-01-30');

project_id = insert_table('project', project)
print('insert project',project_id)

#insert tasks data
task_1 = ('Analyze the requirements of the app', 1, 1, project_id, '2015-01-01', '2015-
01-02')
task_2 = ('Confirm with user about top requirements', 1, 1, project_id, '2015-01-03',
'2015-01-05')

task_id = insert_table('task', task_1)
print('insert task',task_id)
task_id = insert_table('task', task_2)
print('insert task',task_id)

Update Table Data

The following function can be used to update a data record. First, setup the SQL statement.

sql_update_task = """ UPDATE tasks
 SET priority = ? , begin_date = ? , end_date = ?
 WHERE id = ?"""

def update_table(table, data): #data is a tuple (or list??)
 conn = create_connection(database)
 if conn is not None:
 try:
 c = conn.cursor()
 if table == PROJECTS: pass #c.execute(sql_update_project, data)
 elif table == TASKS: c.execute(sql_update_task, data)
 conn.commit()
 except Error as e:
 print(e)
 conn.close()
 else:
 print("Error! Cannot create the database connection.")

update_table(TASKS, (2, '2015-01-04', '2015-01-06', 2))

38 | P a g e

Query and Display Table Data

The SELECT SQL statement is used to select data from one or more tables and return the data rows for analysis
and/or display.

sql_select_all_tasks = "SELECT * FROM tasks"
sql_select_task_by_priority = "SELECT * FROM tasks WHERE priority=?"

def select_from_table(sql, data): #data is a tuple (or list??)
 rows = []
 conn = create_connection(database)
 if conn is not None:
 try:
 c = conn.cursor()
 if not data == (): c.execute(sql, data)
 else: c.execute(sql)
 rows = c.fetchall()
 except Error as e:
 print(e)
 conn.close()
 else:
 print("Error! Cannot create the database connection.")
 return rows

Call the function.

rows = select_from_table(sql_select_all_tasks,())
print('Select all data:')
for row in rows:
 print(row)

rows = select_from_table(sql_select_task_by_priority,(2,))
print('Selected priority 2 data:')
for row in rows:
 print(row)

39 | P a g e

Delete Table Data

Setup the SQL statement, write a function and call the function.

def execute_sql(sql, data): #e.g. for delete
 conn = create_connection(database)
 if conn is not None:
 try:
 c = conn.cursor()
 if not data == (): c.execute(sql, data)
 else: c.execute(sql)
 conn.commit()
 except Error as e:
 print(e)
 conn.close()
 else:
 print("Error! Cannot create the database connection.")

References

https://docs.python.org/3/library/sqlite3.html#

https://www.sqlitetutorial.net/

https://www.sqlitetutorial.net/sqlite-python/

https://pythonspot.com/python-database-programming-sqlite-tutorial/

https://docs.python.org/3/library/sqlite3.html
https://www.sqlitetutorial.net/
https://www.sqlitetutorial.net/sqlite-python/
https://pythonspot.com/python-database-programming-sqlite-tutorial/

40 | P a g e

J. Other Useful Functions

Use a Colour Wheel to Select 256 colours

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if (pos < 0):
 return [0, 0, 0]
 if (pos > 255):
 return [0, 0, 0]
 if (pos < 85):
 return [int(pos * 3), int(255 - (pos*3)), 0]
 elif (pos < 170):
 pos -= 85
 return [int(255 - pos*3), 0, int(pos*3)]
 else:
 pos -= 170
 return [0, int(pos*3), int(255 - pos*3)]

Open a File Dialog Window

import tkinter as tk
from tkinter import filedialog

root = tk.Tk()
root.withdraw()

file_path = filedialog.askopenfilename()
print(file_path)

	A. PyGame Dictionaries
	Data Structures
	Dictionaries
	Why Use Dictionaries not Lists?
	Access Dictionary Values
	Change, Add or Remove Dictionary Values
	Loop the Dictionary
	Create a Dictionary of Dictionaries
	List of Dictionaries
	Sort the List of Dictionaries
	Display the List of Dictionaries on the Screen

	B. PyGame Objects
	Objects
	Create a Class and an Object
	The Initialisation Method
	Create Multiple Objects of the same Class
	Add Other Methods
	Method to Move the Ball
	Method to Define the Ball Rectangle
	Create a list of objects
	Create a New Class by Inheritance

	C. Create a User Interface
	1. Draw the User Interface and List the Tasks (Success Criteria)
	1. Build Missing Components (e.g. a Clickable Button)

	Test each coding stage carefully before going on!!
	D. User Interface Controls
	E. PyGame Files
	File Handling

	HINT: In general, use CSV files for tabular data and JSON for structured data.
	Opening and Closing Text Files
	Write and Read Data with Text Files
	Write and Read Data with CSV Files
	Write and Read JSON Files
	Write and Read XML Files
	https://kontext.tech/column/python/480/read-and-write-xml-files-with-python
	https://stackabuse.com/reading-and-writing-xml-files-in-python/

	F. PyGame Strings
	String Handling
	References
	https://www.w3schools.com/python/python_strings.asp
	https://www.w3schools.com/python/python_string_formatting.asp
	https://www.shortcutfoo.com/app/dojos/python-strings/cheatsheet
	https://www.codecademy.com/learn/learn-python-3/modules/learn-python3-strings/cheatsheet
	Formatting Values in Strings

	G. PyGame Dates and Time
	H. PyGame Serial Connection with CPX or Metro M4 CircuitPython Boards
	CPX Code to Send Serial Data (in CircuitPython Mode, save to CIRCUITPY as code.py)
	Connect the USB to TTL Serial Adapter
	Find the Computer Serial Ports in Use (PyGame Zero Mode)
	Create a Serial Connection
	Read Serial Data from a CPX
	Write PyGame Serial Data to a CPX (PyGame Zero mode)
	CPX Code to Read Data from Serial Connection (CircuitPython Mode)
	Test with a Terminal Emulator Program
	https://learn.adafruit.com/circuit-playground-express-serial-communications/overview

	Windows
	Download PuTTY from https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
	See https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-windows
	Mac
	See https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux

	I. SQLite Relational Database
	SQLite
	See https://www.sqlite.org/index.html for more information.
	SQLiteStudio
	To download, visit https://sqlitestudio.pl/ .
	Create a New Database
	SQL Commands
	See https://www.w3schools.com/sql/default.asp for a comprehensive tutorial of SQL.
	Create Tables
	1. Create a Connection object using the connect() function of the sqlite3 module (as above).
	2. Create a Cursor object by calling the cursor() method of the Connection object.
	3. Pass the CREATE TABLE statement to the execute() method of the Cursor object and execute this method.
	4. Close the connection using the close() method.
	SQL Constants
	Table Functions – Create Table
	Insert Data into the Table
	Update Table Data
	Query and Display Table Data
	Delete Table Data
	References
	https://docs.python.org/3/library/sqlite3.html#
	https://www.sqlitetutorial.net/
	https://www.sqlitetutorial.net/sqlite-python/
	https://pythonspot.com/python-database-programming-sqlite-tutorial/

	J. Other Useful Functions

